organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

5-(2-Methoxyphenyl)-1,3,4-thiadiazol-2yl 2-methoxybenzoate hemihydrate

Jin-hua Yao, Bing Guo, Kang An and Jian-ning Guan*

Department of Applied Chemistry, College of Science, Nanjing University of Technology, No.5 Xinmofan Road, Nanjing, Nanjing 210009, People's Republic of China

Correspondence e-mail: guanjn@sina.com

Received 24 February 2011; accepted 19 March 2011

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.005 Å; R factor = 0.063; wR factor = 0.176; data-to-parameter ratio = 13.4.

In the title compound, $C_{17}H_{14}N_2O_4S\cdot 0.5H_2O$, the molecule, with the exception of the two methoxyphenyl groups, is nearly planar with an r.m.s. deviation of 0.0305 Å. The two 2methoxyphenyl rings make dihedral angles of 4.1 (3) and $2.3 (3)^{\circ}$ with the thiadiazole ring. In the crystal, intermolecular $C-H\cdots O$ and $O-H\cdots N$ hydrogen bonds link the molecules.

Related literature

For general background to 1,3,4-thiadiazole derivatives, see: Matysiak & Opolski (2006). Alireza et al. (2005). Wang et al. (1999). For bond-length data, see: Allen et al. (1987). For the synthesis, see: Kurzer (1971).

Experimental

Crystal data

 $C_{17}H_{14}N_2O_4S \cdot 0.5H_2O$ $M_{\rm m} = 356.37$ Monoclinic, C2/c a = 29.858 (6) Å b = 14.542 (3) Å c = 7.6710 (15) Å $\beta = 95.19 \ (3)^{\circ}$

 $V = 3317.1 (12) \text{ Å}^3$ Z = 8Mo Ka radiation $\mu = 0.22 \text{ mm}^-$ T = 293 K

 $0.30\,\times\,0.20\,\times\,0.10$ mm

Data collection

3050 independent reflections
1881 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.025$
3 standard reflections every 200
reflections
intensity decay: 1%

$R[F^2 > 2\sigma(F^2)] = 0.063$	H atoms treated by a mixture of
$wR(F^2) = 0.176$	independent and constrained
S = 1.00	refinement
3050 reflections	$\Delta \rho_{\rm max} = 0.41 \text{ e } \text{\AA}^{-3}$
228 parameters	$\Delta \rho_{\rm min} = -0.28 \text{ e} \text{ Å}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$\begin{array}{l} O1W - H1W \cdots N2^{i} \\ C11 - H11 \cdots O3^{ii} \end{array}$	1.05 (9)	1.81 (9)	2.821 (4)	159 (7)
	0.93	2.50	3.324 (4)	148

Symmetry codes: (i) x, y, z - 1; (ii) $-x + \frac{1}{2}, -y + \frac{1}{2}, -z + 3$.

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

The authors would like to thank Professor Hua-qin Wang of Nanjing University, for carrying out the X-ray crystallographic analysis.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2283).

References

- Alireza, F., Saeed, E., Abdolreza, H., Majid, R., Kazem, S., Mohammad, H. M. & Abbas, S. (2005). Bioorg. Med. Chem. Lett. 15, S4488-S4492.
- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
- Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft. The Netherlands.
- Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
- Kurzer, F. (1971). J. Chem. Soc. C, 17, 2927-2931.
- Matysiak, J. & Opolski, A. (2006). Bioorg. Med. Chem. 14, 4483-4489.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Wang, Y. G., Cao, L., Yan, J., Ye, W. F., Zhou, Q. C. & Lu, B. X. (1999). Chem. J. Chin. Univ. 20, S1903-S1905.

supplementary materials

Acta Cryst. (2011). E67, o1046 [doi:10.1107/S1600536811010373]

5-(2-Methoxyphenyl)-1,3,4-thiadiazol-2-yl 2-methoxybenzoate hemihydrate

J. Yao, B. Guo, K. An and J. Guan

Comment

1,3,4-Thiadiazole derivatives are of great interest because of their chemical and pharmaceutical properties. Some derivatives play a key role in preparing intermediate for anticarcinogen. Recently new derivatives with 1,3,4-thiadiazole nucleus have been synthesized and evaluated for their antiproliferative effect *in vitro* against the cells of various human tumor cell lines (Matysiak & Opolski, 2006). Some derivatives have effective antibacterial activity. They are of great potential value for killing bacteria (Alireza *et al.* 2005). In addition, this kind of compounds are known to exhibit diverse biological effects, such as insecticidal activity (Wang *et al.* 1999).

Herein we report on the crystal structure of the titled compound, (I). The molecular structure of (I) is shown in Fig. 1. The bond lengths (Allen *et al.* 1987) and angles are within normal ranges. In this structure, there are three rings, ring A (C1/C2/C3/C4/C5/C6), ring B (N1/C7/S/C8/N2) and ring C (C10/C11/C12/C13/C14/C15), all of which are almost planar. Ring B(N1/C7/S/C8/N2) is a planar five-membered ring and the mean deviation from plane is 0.0020 Å. The dihedral angle between ring A and ring B is 4.1 (3)°, ring B and ring C is 2.3 (3)°. In the crystal structure, intermolecular C11—H11···O3 and O1W—H1W···N2 hydrogen bonds (Table 1.) link the molecules to form network structure (Fig. 2), in which they may be effective for the stabilization of the structure.

Experimental

3-Methoxy-phthalic anhydride(8 mmol) and 2-(2-methoxyphenyl)-5-hydroxy-1,3,4-thiadiazol(8 mmol) were added in ethanol(50 ml) (Kurzer, 1971). The mixture was refluxed for 5 h. Reactions were monitored by thin-layer chromatography (TLC) with visualization by ultraviolet light and then the solvent was totally evaporated. Then the white power was obtained. The solid was recrystallized from tetrahydrofuran to give the compound (I) (m.p. 520 K). Crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of a mixed solution of chloroform and tetrahydrofuran.

Refinement

All H atoms were positioned geometrically, with C—H = 0.96 and 0.93 Å for methyl and aromatic H atoms, respectively and constrained to ride on their parent atoms with $U_{iso}(H) = xU_{eq}(C)$, where x = 1.5 for methyl H atoms and x = 1.2 for all other H atoms.

Figures

Fig. 1. A view of the molecular structure of (I). Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2. A packing diagram for (I). Dashed lines indicate intermolecular C—H…O and O—H…N hydrogen bonds.

5-(2-Methoxyphenyl)-1,3,4-thiadiazol-2-yl 2-methoxybenzoate hemihydrate

F(000) = 1464 $D_x = 1.407 \text{ Mg m}^{-3}$ Melting point: 520 K

 $\theta = 9-13^{\circ}$ $\mu = 0.22 \text{ mm}^{-1}$ T = 293 KBlock, colorless $0.30 \times 0.20 \times 0.10 \text{ mm}$

Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å Cell parameters from 25 reflections

Crystal data

$C_{17}H_{14}N_2O_4S{\cdot}0.5H_2O$
$M_r = 356.37$
Monoclinic, C2/c
Hall symbol: -C 2yc
<i>a</i> = 29.858 (6) Å
<i>b</i> = 14.542 (3) Å
<i>c</i> = 7.6710 (15) Å
$\beta = 95.19 (3)^{\circ}$
$V = 3317.1 (12) \text{ Å}^3$
Z = 8

Data collection

Enraf–Nonius CAD-4 diffractometer	1881 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\text{int}} = 0.025$
graphite	$\theta_{\text{max}} = 25.4^\circ, \ \theta_{\text{min}} = 1.4^\circ$
$\omega/2\theta$ scans	$h = 0 \rightarrow 35$
Absorption correction: ψ scan (North <i>et al.</i> , 1968)	$k = 0 \rightarrow 17$
$T_{\min} = 0.936, T_{\max} = 0.978$	$l = -9 \rightarrow 9$
3108 measured reflections	3 standard reflections every 200 reflections
3050 independent reflections	intensity decay: 1%

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.063$ Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites

$wR(F^2) = 0.176$	H atoms treated by a mixture of independent and constrained refinement
<i>S</i> = 1.00	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.098P)^{2}]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
3050 reflections	$(\Delta/\sigma)_{\text{max}} = 0.001$
228 parameters	$\Delta \rho_{max} = 0.41 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.28 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional	atomic	coordinates	and	isotrop	oic or	equivalent	t isotroi	pic dis	placement	parameters	$(Å^2$:)
				· · · · · · · · · · · · · · · · · · ·						p	(/

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
C1	0.05152 (13)	0.3419 (3)	0.6081 (4)	0.0711 (11)
H1	0.0270	0.3110	0.6471	0.085*
C2	0.04737 (17)	0.3882 (4)	0.4474 (5)	0.0932 (16)
H2	0.0195	0.3907	0.3827	0.112*
C3	0.08311 (19)	0.4293 (3)	0.3852 (5)	0.0898 (14)
Н3	0.0800	0.4570	0.2755	0.108*
C4	0.12303 (15)	0.4305 (3)	0.4795 (4)	0.0698 (11)
H4	0.1472	0.4607	0.4363	0.084*
C5	0.12879 (12)	0.3875 (2)	0.6401 (4)	0.0525 (9)
C6	0.09271 (11)	0.3426 (2)	0.7089 (4)	0.0490 (8)
C7	0.09536 (10)	0.2968 (2)	0.8806 (4)	0.0441 (7)
C8	0.10712 (11)	0.2309 (3)	1.1613 (5)	0.0540 (9)
C9	0.16054 (10)	0.2020 (2)	1.4126 (4)	0.0438 (7)
C10	0.16644 (9)	0.1570 (2)	1.5889 (3)	0.0385 (7)
C11	0.20815 (11)	0.1655 (2)	1.6793 (4)	0.0527 (8)
H11	0.2302	0.1989	1.6288	0.063*
C12	0.21841 (13)	0.1272 (3)	1.8389 (5)	0.0630 (10)
H12	0.2469	0.1350	1.8966	0.076*
C13	0.18718 (14)	0.0778 (3)	1.9137 (5)	0.0707 (11)
H13	0.1945	0.0503	2.0220	0.085*
C14	0.14490 (13)	0.0674 (2)	1.8324 (4)	0.0597 (10)
H14	0.1235	0.0336	1.8861	0.072*
C15	0.13365 (10)	0.1075 (2)	1.6690 (4)	0.0419 (7)
C16	0.20649 (14)	0.4248 (3)	0.6754 (6)	0.1006 (16)
H16A	0.2114	0.3935	0.5687	0.151*

supplementary materials

H16B	0.2323	0.4173	0.7582	0.151*
H16C	0.2017	0.4891	0.6517	0.151*
C17	0.05776 (12)	0.0530 (3)	1.6602 (5)	0.0806 (13)
H17A	0.0673	-0.0086	1.6895	0.121*
H17B	0.0310	0.0510	1.5811	0.121*
H17C	0.0517	0.0851	1.7649	0.121*
N1	0.06100 (9)	0.2548 (2)	0.9303 (3)	0.0558 (8)
N2	0.06703 (10)	0.2169 (2)	1.0882 (4)	0.0720 (9)
01	0.16829 (8)	0.38751 (17)	0.7453 (3)	0.0615 (7)
O2	0.11766 (6)	0.19761 (15)	1.3039 (3)	0.0518 (6)
O3	0.19112 (7)	0.24147 (19)	1.3498 (3)	0.0691 (8)
O4	0.09264 (7)	0.10003 (17)	1.5783 (3)	0.0561 (6)
S	0.14064 (3)	0.29401 (7)	1.03358 (11)	0.0554 (3)
O1W	0.0000	0.1206 (3)	0.2500	0.1159 (19)
H1W	0.019 (3)	0.159 (6)	0.167 (12)	0.40 (7)*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.073 (3)	0.091 (3)	0.048 (2)	0.003 (2)	0.0013 (19)	0.009 (2)
C2	0.102 (4)	0.126 (4)	0.048 (2)	0.029 (3)	-0.017 (2)	0.006 (3)
C3	0.134 (4)	0.093 (4)	0.043 (2)	0.019 (3)	0.009 (3)	0.021 (2)
C4	0.120 (3)	0.055 (2)	0.0386 (19)	-0.004 (2)	0.028 (2)	0.0050 (17)
C5	0.077 (2)	0.045 (2)	0.0388 (17)	-0.0061 (17)	0.0212 (17)	0.0022 (15)
C6	0.058 (2)	0.058 (2)	0.0316 (15)	-0.0035 (16)	0.0110 (14)	0.0026 (15)
C7	0.0462 (17)	0.0501 (19)	0.0380 (16)	-0.0056 (15)	0.0142 (13)	0.0003 (14)
C8	0.0469 (19)	0.061 (2)	0.056 (2)	-0.0099 (17)	0.0134 (16)	-0.0026 (18)
C9	0.0421 (16)	0.0516 (19)	0.0399 (16)	-0.0055 (15)	0.0158 (13)	0.0057 (15)
C10	0.0419 (16)	0.0449 (18)	0.0302 (14)	-0.0043 (14)	0.0117 (12)	0.0022 (13)
C11	0.0518 (19)	0.063 (2)	0.0444 (18)	0.0056 (17)	0.0107 (15)	0.0064 (16)
C12	0.060 (2)	0.075 (3)	0.053 (2)	0.014 (2)	-0.0012 (18)	0.0072 (19)
C13	0.094 (3)	0.069 (3)	0.048 (2)	0.013 (2)	-0.001 (2)	0.0129 (19)
C14	0.087 (3)	0.052 (2)	0.0433 (18)	-0.007 (2)	0.0264 (19)	0.0063 (16)
C15	0.0541 (17)	0.0398 (17)	0.0337 (15)	0.0006 (15)	0.0149 (14)	-0.0012 (13)
C16	0.099 (3)	0.110 (4)	0.100 (3)	-0.052 (3)	0.049 (3)	-0.003 (3)
C17	0.071 (2)	0.099 (3)	0.077 (3)	-0.038 (2)	0.031 (2)	-0.006 (2)
N1	0.0557 (17)	0.074 (2)	0.0391 (15)	-0.0111 (15)	0.0085 (13)	0.0099 (14)
N2	0.068 (2)	0.090 (3)	0.0583 (19)	-0.0133 (19)	0.0061 (16)	0.0060 (18)
01	0.0687 (16)	0.0657 (17)	0.0538 (14)	-0.0200 (13)	0.0250 (13)	0.0021 (12)
O2	0.0355 (11)	0.0463 (13)	0.0756 (16)	-0.0102 (10)	0.0167 (11)	-0.0032 (12)
03	0.0611 (15)	0.100 (2)	0.0479 (14)	-0.0212 (14)	0.0167 (11)	0.0271 (13)
O4	0.0523 (13)	0.0682 (16)	0.0502 (13)	-0.0190 (12)	0.0183 (11)	0.0020 (11)
S	0.0537 (5)	0.0621 (6)	0.0523 (5)	-0.0108 (4)	0.0158 (4)	0.0026 (4)
O1W	0.083 (3)	0.086 (3)	0.187 (6)	0.000	0.060 (3)	0.000

Geometric parameters (Å, °)

C1—C6	1.392 (5)	C10—C15	1.401 (4)
C1—C2	1.401 (5)	C11—C12	1.355 (4)

C1—H1	0.9300	C11—H11	0.9300
C2—C3	1.347 (6)	C12—C13	1.346 (5)
С2—Н2	0.9300	C12—H12	0.9300
C3—C4	1.338 (5)	C13—C14	1.365 (5)
С3—Н3	0.9300	С13—Н13	0.9300
C4—C5	1.378 (5)	C14—C15	1.396 (4)
C4—H4	0.9300	C14—H14	0.9300
C5—O1	1.367 (4)	C15—O4	1.357 (4)
C5—C6	1.403 (4)	C16—O1	1.412 (4)
C6—C7	1.472 (4)	C16—H16A	0.9600
C7—N1	1.282 (4)	C16—H16B	0.9600
C7—S	1.709 (3)	C16—H16C	0.9600
C8—O2	1.212 (4)	C17—O4	1.437 (4)
C8—N2	1.291 (4)	С17—Н17А	0.9600
C8—S	1.726 (4)	С17—Н17В	0.9600
С9—ОЗ	1.214 (3)	С17—Н17С	0.9600
C9—O2	1.465 (4)	N1—N2	1.328 (4)
C9—C10	1.499 (4)	O1W—H1W	1.05 (8)
C10—C11	1.375 (4)		
C6—C1—C2	119.2 (4)	C10-C11-H11	118.7
С6—С1—Н1	120.4	C13—C12—C11	119.7 (4)
C2—C1—H1	120.4	C13—C12—H12	120.1
C3—C2—C1	121.0 (4)	C11—C12—H12	120.1
С3—С2—Н2	119.5	C12—C13—C14	120.8 (3)
C1—C2—H2	119.5	С12—С13—Н13	119.6
C4—C3—C2	120.7 (4)	C14—C13—H13	119.6
С4—С3—Н3	119.7	C13—C14—C15	120.1 (3)
С2—С3—Н3	119.7	C13—C14—H14	119.9
C3—C4—C5	120.7 (4)	C15—C14—H14	119.9
C3—C4—H4	119.6	O4—C15—C14	124.1 (3)
С5—С4—Н4	119.6	O4—C15—C10	116.8 (3)
O1—C5—C4	124.0 (3)	C14—C15—C10	119.2 (3)
O1—C5—C6	115.4 (3)	O1-C16-H16A	109.5
C4—C5—C6	120.6 (4)	O1-C16-H16B	109.5
C1—C6—C5	117.7 (3)	H16A—C16—H16B	109.5
C1—C6—C7	117.8 (3)	O1-C16-H16C	109.5
C5—C6—C7	124.5 (3)	H16A—C16—H16C	109.5
N1—C7—C6	120.2 (3)	H16B-C16-H16C	109.5
N1—C7—S	112.9 (2)	O4—C17—H17A	109.5
C6—C7—S	126.9 (2)	O4—C17—H17B	109.5
O2—C8—N2	118.9 (3)	H17A—C17—H17B	109.5
O2—C8—S	127.5 (3)	O4—C17—H17C	109.5
N2—C8—S	113.6 (3)	H17A—C17—H17C	109.5
O3—C9—O2	116.4 (3)	H17B—C17—H17C	109.5
O3—C9—C10	122.2 (3)	C7—N1—N2	115.0 (3)
O2—C9—C10	121.3 (2)	C8—N2—N1	112.0 (3)
C11—C10—C15	117.5 (3)	C5—O1—C16	117.3 (3)
C11—C10—C9	116.3 (3)	C8—O2—C9	129.7 (3)
C15—C10—C9	126.2 (3)	C15—O4—C17	118.0 (3)

supplementary materials

C12—C11—C10	122.6 (3)	C7—S—C8	86.50 (16)
C12—C11—H11	118.7		
C6—C1—C2—C3	3.4 (7)	C13-C14-C15-O4	179.4 (3)
C1—C2—C3—C4	-3.2 (8)	C13-C14-C15-C10	0.9 (5)
C2—C3—C4—C5	1.9 (7)	C11—C10—C15—O4	179.8 (3)
C3—C4—C5—O1	-178.6 (4)	C9—C10—C15—O4	-0.4 (4)
C3—C4—C5—C6	-0.8 (6)	C11-C10-C15-C14	-1.6 (4)
C2-C1-C6-C5	-2.3 (5)	C9-C10-C15-C14	178.2 (3)
C2-C1-C6-C7	177.3 (3)	C6—C7—N1—N2	-179.3 (3)
O1-C5-C6-C1	179.0 (3)	S-C7-N1-N2	-0.5 (4)
C4—C5—C6—C1	1.0 (5)	O2—C8—N2—N1	-177.8 (3)
O1—C5—C6—C7	-0.5 (5)	S-C8-N2-N1	-0.1 (4)
C4—C5—C6—C7	-178.4 (3)	C7—N1—N2—C8	0.4 (5)
C1—C6—C7—N1	2.8 (5)	C4—C5—O1—C16	-7.5 (5)
C5—C6—C7—N1	-177.7 (3)	C6—C5—O1—C16	174.6 (3)
C1—C6—C7—S	-175.8 (3)	N2-C8-O2-C9	179.1 (3)
C5—C6—C7—S	3.7 (5)	S-C8-O2-C9	1.8 (5)
O3—C9—C10—C11	2.2 (5)	O3—C9—O2—C8	-3.4 (5)
O2—C9—C10—C11	179.9 (3)	C10—C9—O2—C8	178.8 (3)
O3—C9—C10—C15	-177.7 (3)	C14—C15—O4—C17	4.1 (5)
O2—C9—C10—C15	0.1 (5)	C10-C15-O4-C17	-177.4 (3)
C15—C10—C11—C12	0.9 (5)	N1—C7—S—C8	0.4 (3)
C9—C10—C11—C12	-179.0 (3)	C6—C7—S—C8	179.1 (3)
C10-C11-C12-C13	0.7 (6)	O2—C8—S—C7	177.3 (4)
C11-C12-C13-C14	-1.4 (6)	N2—C8—S—C7	-0.2 (3)
C12-C13-C14-C15	0.7 (6)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A	
O1W—H1W····N2 ⁱ	1.05 (9)	1.81 (9)	2.821 (4)	159 (7)	
C11—H11···O3 ⁱⁱ	0.93	2.50	3.324 (4)	148	
Symmetry codes: (i) $x, y, z-1$; (ii) $-x+1/2, -y+1/2, -z+3$.					

Fig. 1

